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ABSTRACT

The following paper presents an alternate, more computationally viable Volterra series based, reduced-order-
modeling approach for aerodynamic systems with stronger nonlinearities. The method is applied to a two-
dimensional transonic airfoil undergoing high-amplitude, forced pitch harmonic oscillations. Unlike the stan-
dard Volterra series approach, the proposed method does not require the successive identification of computa-
tionally costly, higher-order Volterra kernels. Instead, stronger nonlinearities are captured through the identi-
fication of multiple, low-order Volterra kernels.

1.0 Introduction

Transonic aeroelasticity relies heavily on Computational Fluid Dynamics (CFD) for solutions to the
complex, and inherently nonlinear transonic flow field. Unfortunately, the large computational re-
sources associated with CFD solutions significantly inhibit the approach. As a result, interest in
reduced-order-models (ROMs) of the transonic aerodynamic system has been significant [1–3]. Al-
though research into the Volterra series as a ROM for the transonic aerodynamic system has been
considerable [1, 4–11], in his recent review paper, Silva suggests that several critical issues remain
unresolved.

1. Volterra series for MDOF aerodynamic systems – Silva states that ”An important issue that needs
to be addressed is the simultaneous excitation of multiple degrees of freedom in order to prop-
erly identify any nonlinear cross-coupling of the degrees of freedom” [2]. All previous applica-
tions of the Volterra series to multi-degree-of-freedom aerodynamic systems has been limited
to the identification of aerodynamic nonlinearities resulting from individual perturbations of
structural modes. Determination of total lift and moment for simultaneous motions required
the superposition of the individual nonlinear responses. However, as suggested by Silva, the
nonlinear nature of the system renders the principle of superposition invalid.

2. Volterra series convergence – Silva states that ”...potential disadvantages of the Volterra theory
include input amplitude limitations related to convergence issues and the need for higher-order
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kernels” [2]. Identification of Volterra kernels is a resource intensive endeavor; limiting most
aerodynamic applications to second-order truncations of the Volterra series. Unfortunately,
such low-ordered series are applicable to weakly nonlinear systems only. For transonic aerody-
namic applications, this requirement translates to small structural perturbations in low Mach
number transonic flow regimes.

A method which addresses the problem of Volterra series modeling of MDOF aerodynamic systems
has recently been proposed [12]. The purpose of the present paper is to introduce and summarize a
method which addresses the problem of Volterra series convergence. The proposed method features
a novel approach to the modeling of single-input nonlinear systems using the dual-input Volterra
series. Instead of necessitating the identification of higher-order kernels, the proposed method re-
lies on the identification of multiple, low-ordered Volterra kernels. Although a rigorous proof of
this approach is not provided in this paper, encouraging preliminary results are presented. First,
a simple nonlinear, first-order differential equation is modeled for illustrative purposes. Then, the
applicability of the proposed method to nonlinear aerodynamic systems is illustrated by modeling
the transonic, unsteady, two-degree-of-freedom airfoil undergoing high amplitude, forced pitch har-
monic oscillations.

The organization of this paper is as follows. First, in section 2.0, the standard, single-input Volterra
series approach to single-input systems is presented. This section describes the disadvantages of the
single-input Volterra series and summarizes the motivation behind the method proposed in this pa-
per. This new method, from here on refereed to as the dual-input Volterra series ROM method, is
introduced in section 3.0. Finally, sections 4.0 and 5.0 contain results of the single and dual-input
Volterra series ROMs of the example problem and the unsteady transonic airfoil respectively.

2.0 Volterra Theory

The Volterra theory of nonlinear systems is quite mature and several texts are available [13, 14]. It
was first applied to nonlinear engineering problems by Wiener [15] and first applied to the transonic
aerodynamic system by Silva [8].

The output y(t) of a continuous-time, causal, time-invariant, fading memory, nonlinear system Ψ,
due to a single-input x(t)

y(t) = Ψ{x(t)} (1)

can be modeled using the pth-order, Volterra series

y(t) =
p∑
i=1

Hi

=
∫ t

−∞
H1(t− τ)x(τ)dτ

+
∫ t

−∞

∫ t

−∞
H2(t− τ1, t− τ2)x(τ1)x(τ2)dτ1dτ2

...

+
∫ t

−∞
· · ·
∫ t

−∞
Hp(t− τ1, · · · , t− τp)

p∏
i=1

{x(τi)dτi}

(2)
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where the pth-order Volterra operator Hp, is defined as a p-fold convolution between the input x(t)
and the pth-order Volterra kernel Hp(t, · · · , t). Due to the inherent and exponentially increasing diffi-
culty of identifying higher-order kernels, especially when computational simulations are used, most
aerodynamic applications use a truncated, second-order (p = 2) Volterra series

y(t) =
∫ t

−∞
H1(t− τ)x(τ)dτ

+
∫ t

−∞

∫ t

−∞
H2(t− τ1, t− τ2)x(τ1)x(τ2)dτ1dτ2

(3)

The identification of Volterra kernels is key to the synthesis of a Volterra ROM. However, analytical
derivations of the Volterra kernels in continuous-time are only possible if analytical, closed-form ex-
pression of the input-output relationship of the nonlinear system Ψ are available. Unfortunately,
many engineering applications of interest including aerodynamic applications, lack such closed-
form formulations and instead, rely on numerical solutions of the nonlinear system Ψ. As a result,
identification of the Volterra kernels involves the processing of discrete-time outputs due to specifi-
cally tailored training inputs. Consequently, the discrete-time version of the Volterra series utilizing
discrete-time Volterra operators and kernels, is preferred. For a uniformly sampled, discrete-time
representation of the system

y[n] = Ψ{x[n]} (4)

where
x[n] = x(t)|t=n∆T = x(n∆T ) (5)

y[n] = y(t)|t=n∆T = y(n∆T ) (6)

and n = 0, 1, · · · , N . Hence, a second-order (p = 2), discrete-time Volterra series is of the form

y[n] =
n∑
k=0

H1[n− k]x[k]

+
n∑

k1=0

n∑
k2=0

H2[n− k1, n− k2]x[k1]x[k2]
(7)

The first and second-order Volterra kernels can be identified using the unit-pulse identification method

H1[n] = 2Ψ{δ[n]}+
1
2

Ψ{2δ[n]} (8)

N∑
k=0

(
2H2[n, n− k] = Ψ{δ[n] + δ[n− k]}

− Ψ{δ[n]} −Ψ{δ[n− k]}

)
(9)

where δ[n] is the unit-pulse function; discrete-time version of the impulse function

δ[n] =
{

1 n = 0
0 n 6= 0

(10)

The identification of the first-order kernel H1[n] is straightforward. Only two outputs due to inputs
δ[n] and 2δ[n] are required. The identification of the second-order kernel H2[n, n], is more involved
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since multiple outputs due to inputs δ[n] and δ[n − k] for k = 0, 1, · · · , N must be computed. Due to
symmetry, for all k

H2[n, n− k] = H2[n− k, n] (11)

A second-order Volterra series ROM is adequate for weakly nonlinear systems. However, modeling
stronger nonlinearities requires the identification and inclusion of higher-order kernels. Due to the
inherent difficulties associated with the identification of higher-order kernels, this is often not feasi-
ble. In this paper, an alternate method of increasing the accuracy of a second-order Volterra ROM is
presented.

3.0 Dual-Input Volterra ROM of Single-Input Systems

The multi-input Volterra series has been traditionally applied to multi-degree-of-freedom systems [16–
21], including aerodynamic multi-degree-of-freedom systems [12]. The method proposed in this pa-
per utilizes the multi-input series for single-input systems by artificially subdividing a single-input
system

y[n] = Ψ{x[n]} (12)

into a dual-input system

y[n] = Ψ{x1[n], x2[n]} (13)

where the two inputs x1[n] and x2[n] are the positive and negative components of x[n]

x1[n] = x[n] if x[n] ≥ 0
x1[n] = 0 if x[n] < 0

(14)

x2[n] = 0 if x[n] ≥ 0
x2[n] = x[n] if x[n] < 0

(15)
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We assume the output y[n], of the single-input system can modeled using a second-order, dual-input
Volterra series of the artificial dual-input system

y[n] =
2∑
j=1

{
n∑
k=0

Hj
1 [n− τ ]xj [k]

}

+
2∑

j1=1

2∑
j2=1


n∑

k1=0

n∑
k1=0

Hj1j2
2 [n− k1, n− k2]xj1 [k1]xj2 [k2]


=

n∑
k=0

H1
1 [n− τ ]x1[k] +

n∑
k=0

H2
1 [n− τ ]x2[k]

+
n∑

k1=0

n∑
k1=0

H11
2 [n− k1, n− k2]x1[k1]x1[k2]

+
n∑

k1=0

n∑
k1=0

H22
2 [n− k1, n− k2]x2[k1]x2[k2]

+
n∑

k1=0

n∑
k1=0

H12
2 [n− k1, n− k2]x1[k1]x2[k2]

+
n∑

k1=0

n∑
k1=0

H21
2 [n− k1, n− k2]x2[k1]x1[k2]

(16)

It should be noted that the superscripts appearing on the first and second-order, dual-input Volterra
kernels identify to which inputs, x1(t) or x2(t), the kernel corresponds to. For example, the second-
order Volterra kernel, H12

2 , corresponds to both the x1(t) and x2(t) inputs, while the second-order
Volterra kernel, H22

2 , corresponds to the input x2(t) only. The first and second-order, dual-input
Volterra kernels can be identified using Eq. 17 and 18

2∑
j=1

(
Hj

1 [n] = 2Ψ{δj [n]}+
1
2

Ψ{2δj [n]}
)

(17)

2∑
j1=1

2∑
j2=1

{
N∑
k=0

(
2Hj1j2

2 [n, n− k] = Ψ{δj1 [n] + δj2 [n− k]}
− Ψ{δj1 [n]} −Ψ{δj2 [n− k]}

)}
(18)

The identification process for the dual-input kernels uses both positive and negative unit-pulse func-
tions

δ1[n] =
{

1 n = 0
0 n 6= 0

δ2[n] =
{
−1 n = 0
0 n 6= 0

(19)

Due to symmetry, for all k.

Hj1j2
2 [n, n− k] = Hj1j2

2 [n− k, n] for j1 = j2
Hj1j2

2 [n, n− k] = Hj2j1
2 [n− k, n] for j1 6= j2

(20)
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The following section demonstrates the capabilities of the dual-input Volterra series ROM method
using a simple example problem.

4.0 Example Problem

Consider a single-input x(t), single-output y(t) system Ψ

y(t) = Ψ{x(t)} (21)

described by the following nonlinear differential equation

ẏ(t) + y(t) + ky(t)2 = x(t) (22)

where

k =
{

0.5 y(t) > 0
0 y(t) ≤ 0

(23)

The ”exact” output y(t), of Eq. 22 is determined using a second-order backward in time, finite differ-
ence model with a time step ∆t, equal to 2π/30.

4.1 Second-Order, Single-Input Volterra ROM of Example Problem

The second-order, single-input Volterra series ROM of the example problem is of the form

y[n] =
n∑
k=0

H1[n− k]x[k]

+
n∑

k1=0

n∑
k2=0

H2[n− k1, n− k2]x[k1]x[k2]
(24)

The first and second-order, single-input Volterra kernels H1 and H2, are identified using Eq. 8 and
Eq. 9 respectively.

4.2 Second-Order, Dual-Input Volterra ROM of Example Problem

The second-order, dual-input Volterra series ROM of the example problem is of the form

y[n] =
2∑
j=1

{
n∑
k=0

Hj
1 [n− τ ]xj [k]

}

+
2∑

j1=1

2∑
j2=1


n∑

k1=0

n∑
k1=0

Hj1j2
2 [n− k1, n− k2]xj1 [k1]xj2 [k2]


(25)

where the single input is subdivided into its positive and negative components

x1[n] = x[n] if x[n] ≥ 0
x1[n] = 0 if x[n] < 0

(26)
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x2[n] = 0 if x[n] ≥ 0
x2[n] = x[n] if x[n] < 0

(27)

The first and second-order, dual-input Volterra kernels H1
1 , H

2
1 and H11

2 , H22
2 , H12

2 , H21
2 are identified

using Eq. 17 and 18 respectively.

4.3 Example Problem Results

Figure 1 illustrates the steady-state output of the finite difference and Volterra ROM models of the
example problem for a sinusoidal input

x[n] = sin[n∆t] (28)

The thick gray curve plots the ”exact”, finite-difference solution of the example problem. The thin
black curve illustrates the output as predicted by a second-order, single-input Volterra series ROM.
The dotted curve corresponds to the system response as predicted by a second-order, dual-input
Volterra series ROM. It is clear that for this specific example, the second-order, dual-input Volterra
ROM is significantly more accurate then the second-order, single-input Volterra ROM.
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Figure 1: Example problem results

5.0 Unsteady Transonic Airfoil

Coefficients of liftCL[n], and momentCM [n], fully characterize the aerodynamics of a two-dimensional
NACA0012 airfoil oscillating in pitch α[n]. For the sake of brevity, in this paper we limit our discus-
sion to the aerodynamic moment output only. The ”exact” solution is determined using the Carleton
Multi Block (CMB) CFD code

CM [n] = CFD{α[n]} (29)

The CMB code is a derivative of a code originally developed at the University of Glasgow, specif-
ically tailored for transonic, time marching aeroelastic analysis. For further details, refer to Dubuc
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et al [22] and Badcock et al [23]. The aerodynamics of the airfoil were modeled using the inviscid
Euler equations. The two-dimensional airfoil domain was discretized using a C type 180x33 Euler
grid with 130 nodes on the airfoil. The surface nodes were a distance of approximately 0.001c off the
airfoil surface, where c is the airfoil chord. The mesh extended into the far field approximately 10c in
all directions. The unsteady solutions were solved using 20 time steps per each period of the airfoil
pitch oscillation. This choice of mesh and time step was based on several studies on mesh refinement
carried out by Dubuc et al., which showed that no significant accuracy improvements are gained at
higher spatial or temporal mesh densities [22].

5.1 Second-Order, Single-Input Volterra ROM of Unsteady Transonic Airfoil

A second-order, single-input Volterra series ROM of the unsteady aerodynamic system is of the form

CM [n] =
n∑
k=0

H1[n− k]α[k]

+
n∑

k1=0

n∑
k2=0

H2[n− k1, n− k2]α[k1]α[k2]
(30)

The first and second-order, single-input Volterra kernels H1 and H2, are identified using Eq. 8 and
Eq. 9; reproduced here for convenience

H1[n] = 2CFD{δ[n]}+
1
2

CFD{2δ[n]} (31)

N∑
k=0

(
2H2[n, n− k] = CFD{δ[n] + δ[n− k]}

− CFD{δ[n]} − CFD{δ[n− k]}

)
(32)

where δ[n] is the unit-pulse function in pitch

δ[n] =
{

1 n = 0
0 n 6= 0

(33)

5.2 Second-Order, Dual-Input Volterra ROM of Unsteady Transonic Airfoil

A second-order, single-input Volterra series ROM of the unsteady aerodynamic system is of the form

CM [n] =
2∑
j=1

{
n∑
k=0

Hj
1 [n− τ ]αj [k]

}

+
2∑

j1=1

2∑
j2=1


n∑

k1=0

n∑
k1=0

Hj1j2
2 [n− k1, n− k2]αj1 [k1]αj2 [k2]


(34)

where the single-input, single-output system

CM = CFD{α[n]} (35)
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is artificially subdivided into a dual-input system

CM = CFD{α1[n], α2[n]} (36)

where the two inputs α1[n] and α2[n], are the positive and negative components of α[n]

α1[n] = α[n] if α[n] ≥ 0
α1[n] = 0 if α[n] < 0

(37)

α2[n] = 0 if α[n] ≥ 0
α2[n] = α[n] if α[n] < 0

(38)

The first and second-order, dual-input Volterra kernels H1
1 , H

2
1 , H

11
2 , H22

2 , H12
2 , and H21

2 are identified
using Eq. 17 and 18; reproduced here for convenience

2∑
j=1

(
Hj

1 [n] = 2CFD{δj [n]}+
1
2

CFD{2δj [n]}
)

(39)

2∑
j1=1

2∑
j2=1

{
N∑
k=0

(
2Hj1j2

2 [n, n− k] = CFD{δj1 [n] + δj2 [n− k]}
− CFD{δj1 [n]} − CFD{δj2 [n− k]}

)}
(40)

The identification method uses both positive and negative unit-impulse functions in pitch

δ1[n] =
{

1 n = 0
0 n 6= 0

δ2[n] =
{
−1 n = 0
0 n 6= 0

(41)

5.3 Unsteady Transonic Airfoil Results

We choose to model the AGARD-R-702 [24], CT2 test case which features the NACA0012 airfoil
oscillating in pitch about its quarter-chord

α(t) = 3.16◦ + 4.59◦ sin(ωαt) (42)

at a Mach number M = 0.6 and a reduced frequency kα = 0.081, defined as

k =
ωαc

2U∞
(43)

where U∞ is the constant forward velocity of the airfoil in terms of the Mach number M. Figure 2
compares the experimental and CFD outputs of the AGARD test case; very good agreement was
obtained. Errors are likely associated with the neglect of viscous forces and uncertainties in the ex-
perimental data [22]. Figure 3 illustrates the instantaneous pressure coefficientCP distributions along
the upper and lower surfaces of the NACA0012 airfoil. This particular pitch motion results in the for-
mation of a strong shockwave experiencing Tijdeman’s [25] Type B shock motion. Figure 4 shows the
steady-state CFD and Volterra ROM moment coefficient outputs. The thick gray curve illustrates the
”exact” CFD solution. The thin black curve illustrates the output as predicted by the second-order,
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Figure 2: CFD validation using AGARD CT2 test case experimental results
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Figure 3: Instantaneous pressure coefficient CP distributions for the AGARD CT2 test case

single-input Volterra series ROM. The dotted curve corresponds to the system response as predicted
by the second-order, dual-input Volterra series ROM. For this specific test case, the second-order,
dual-input Volterra series ROM of Eq. 34, shows significant accuracy improvements over the second-
order, single-input Volterra series ROM. We can quantify the modeling performance of the Volterra
ROMs using the L2 relative error norm, given as

Error =

√
{CFD−Volterra ROM}2

{CFD}2
× 100 (44)

Error norms for the Volterra ROMs covered in this paper are summarized in Table 1.

6.0 Conclusion

The following paper presented an alternate, more computationally viable Volterra series based, reduced-
order-modeling approach for aerodynamic systems with stronger nonlinearities. The method is ap-
plied to a two-dimensional transonic airfoil undergoing high-amplitude, forced pitch harmonic os-
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Figure 4: Volterra ROMs of AGARD CT2 test case

Table 1: Volterra ROM modeling error norms

ROM Error [%]

Volterra(H1, H2) 24.7
Volterra(H1

1 , H
2
1 , H

11
2 , H22

2 , H12
2 , H21

2 ) 8.7

cillations. It has been demonstrated that this approach can considerably increase the accuracy of a
standard second-order Volterra ROM with out the identification of the costly third-order kernel.
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